Issue 20, 2020

Understanding the ML black box with simple descriptors to predict cluster–adsorbate interaction energy

Abstract

Density functional theory (DFT) is currently one of the most accurate and yet practical theories used to gain insight into the properties of materials. Although successful, the computational cost required is still the main hurdle even today. In recent years, there has been a trend of combining DFT with Machine Learning (ML) to reduce the computational cost without compromising accuracy. Finding the right set of descriptors that are simple to understand in terms of giving insights about the problem at hand, lies at the heart of any ML problem. In this work, we demonstrate the use of nearest neighbor (NN) distances as descriptors to predict the interaction energy between the cluster and an adsorbate. The model is trained over a size range of 5 to 75 atom clusters. When the training and testing is carried out on mutually exclusive cluster sizes, the mean absolute error (MAE) in predicting the interaction energy is ∼ 0.24 eV. MAE reduces to 0.1 eV when testing and training sets include information from the complete range. Furthermore, when the same set of descriptors are tested over individual sizes, the MAE further reduces to ∼0.05 eV. We bring out the correlation between dispersion in the nearest neighbor distances and variation in MAE for individual sizes. Our detailed and extensive DFT calculations provide a rationale as to why nearest neighbor distances work so well. Finally, we also demonstrate the transferability of the ML model by applying the same recipe of descriptors to systems of different elements like (Na10), bimetallic systems (Al6Ga6, Li4Sn6, and Au40Cu40) and also different adsorbates (N2, O2, and CO).

Graphical abstract: Understanding the ML black box with simple descriptors to predict cluster–adsorbate interaction energy

Supplementary files

Article information

Article type
Paper
Submitted
06 Feb 2020
Accepted
28 Apr 2020
First published
29 Apr 2020

New J. Chem., 2020,44, 8545-8553

Understanding the ML black box with simple descriptors to predict cluster–adsorbate interaction energy

S. Agarwal, S. Mehta and K. Joshi, New J. Chem., 2020, 44, 8545 DOI: 10.1039/D0NJ00633E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements