Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Phytochemical species intercalated into layered double hydroxides: structural investigation and biocompatibility assays

Author affiliations

Abstract

The compound p-coumaric acid (HCou) is found in many foods and presents action in the suppression of chronic diseases and protective effects on neurodegenerative disorders. This work presents the intercalation of this phytochemical species into Layered Double Hydroxides (LDHs) of magnesium–aluminum and zinc–aluminum using a coprecipitation method. Solid samples were characterized by X-ray diffraction, solid-state 13C Nuclear Magnetic Resonance, mass coupled thermal analysis, and vibrational spectroscopy. The amount of coumarate anions in the LDH-Cou materials is about 32–35 wt%. Better crystallinity was observed for Zn2Al-LDH compared to Mg2Al-LDH attributed to a better stacking of the layers. According to XRD data and the one-dimensional (1D) electron density map, the coumarate anions in Zn2Al-LDH are accommodated in a bilayer arrangement with the aromatic ring perpendicular to the layers and the carboxylate groups interacting with the hydroxide layers. The thermogravimetric analysis coupled to mass spectrometry showed an increased thermal stability and distinct decomposition profiles of the intercalated organic species compared to the sodium coumarate salts. Interestingly, solid-state 13C NMR spectra combined with elemental and thermal analysis strongly suggest the presence of two intercalated structures in the case of the Mg2Al carrier with particles containing either the monoanion (Cou) or the dianion (Cou2−) while Zn2Al intercalates only the monovalent coumarate anion. Biocompatibility of LDH-Cou materials was assessed by in vivo assays via tablet implantation in the rat abdominal wall. After 28 days of implantation, completing the tissue remodeling process, the healing response is positive (lack of antigenic reaction signals around both tablets), indicating a state of biointegration and biocompatibility. Also, the LDH tablets were found to promote collagen deposition without the presence of fibrotic encapsulation. These data open new opportunities for the application of LDHs intercalated with bioactive species in implantable devices.

Graphical abstract: Phytochemical species intercalated into layered double hydroxides: structural investigation and biocompatibility assays

Back to tab navigation

Supplementary files

Article information


Submitted
15 Jan 2020
Accepted
26 Mar 2020
First published
30 Mar 2020

New J. Chem., 2020, Advance Article
Article type
Paper

Phytochemical species intercalated into layered double hydroxides: structural investigation and biocompatibility assays

V. R. R. Cunha, P. A. D. Petersen, R. B. Souza, A. M. C. R. P. F. Martins, F. Leroux, C. Taviot-Gueho, H. M. Petrilli, I. H. J. Koh and V. R. L. Constantino, New J. Chem., 2020, Advance Article , DOI: 10.1039/D0NJ00238K

Social activity

Search articles by author

Spotlight

Advertisements