Jump to main content
Jump to site search


Synthesis of micro–mesoporous CPO-27-Mg@KIT-6 composites and their test in CO2 adsorption

Author affiliations

Abstract

In this work, we present the preparation of hybrid materials constituted by a Metal Organic Framework (type CPO-27-Mg) and a mesoporous silica (type KIT-6) which were successfully assembled through an in situ hydrothermal method. The composites were characterised by powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), microscopic techniques (SEM and TEM), N2 adsorption–desorption isotherms at 77 K and CO2 adsorption at 273 K; these techniques confirmed the obtaining of hybrid materials and not simple physical mixtures. Finally, the hybrid materials were tested in the CO2 adsorption at different temperatures and from 0–10 bar of pressure, where the exposure to high relative humidity were also monitored. The CPO-27-Mg@KIT-6 (1 : 1) and (2 : 1) composites exhibited interesting values of CO2 adsorption capacity, compared with those reported in the literature. Therefore, this study opens new pathways for designing porous structured MOF-based materials with advanced gas separation performance.

Graphical abstract: Synthesis of micro–mesoporous CPO-27-Mg@KIT-6 composites and their test in CO2 adsorption

Back to tab navigation

Supplementary files

Article information


Submitted
24 Dec 2019
Accepted
11 Feb 2020
First published
18 Feb 2020

New J. Chem., 2020, Advance Article
Article type
Paper

Synthesis of micro–mesoporous CPO-27-Mg@KIT-6 composites and their test in CO2 adsorption

D. Villarroel-Rocha, A. A. Godoy, C. Toncón-Leal, J. Villarroel-Rocha, M. S. Moreno, M. C. Bernini, G. E. Narda and K. Sapag, New J. Chem., 2020, Advance Article , DOI: 10.1039/C9NJ06358G

Social activity

Search articles by author

Spotlight

Advertisements