Issue 10, 2020

A new 3D four-fold interpenetrated dia-like luminescent Zn(ii)-based metal–organic framework: the sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol

Abstract

A new three-dimensional zinc-based metal–organic framework, namely [Zn2(4,4′-nba)2(1,4-bib)2]n (1), where 4,4′-H2nba = 3-nitro-4,4′-biphenyldicarboxylic acid and 1,4-bib = 1,4-bis(imidazole-1-ylmethyl)benzene, has been solvothermally synthesized and structurally characterized via single-crystal X-ray diffraction, IR spectroscopic, elemental, thermogravimetric, and Hirshfeld surface analyses. In the crystal structure of 1, the oxygen and nitrogen atoms of two 4,4′-nba2− and two 1,4-bib ligands bind to the metal ion, creating irregular tetrahedral geometry. The 4,4′-nba2− and 1,4-bib ligands serve as linear bidentate linkers to form a four-fold interpenetrated 3D framework with dia-like topology. Luminescence studies revealed that 1 can be used as a highly sensitive multi-responsive luminescent sensor for sensing Fe3+, Cr2O72−, and CrO42− in H2O, and nitrobenzene in C2H5OH. The detection limits of Fe3+, Cr2O72−, CrO42− and nitrobenzene can reach 1.76 μM, 3.25 μM, 3.8 μM and 0.19 μM, respectively. Moreover, 1 can be recycled at least five times for sensing Fe(III) and Cr(VI). The sensitivity and stability of 1, 1@Fe3+, 1@Cr2O72, and 1@CrO42− were also investigated at different pH and temperature values. 1 exhibited satisfactory sensing abilities when the pH ranged from 3 to 10, and the temperature ranged from 5 °C to 75 °C, indicating that 1 could act as a fluorescent probe for Fe3+ under physiological pH conditions. These results support the idea that 1 has good anti-interference abilities and potential for sensing Fe(III), Cr(VI) and nitrobenzene in real environments. In addition, the possible fluorescence quenching mechanism was explored in this paper.

Graphical abstract: A new 3D four-fold interpenetrated dia-like luminescent Zn(ii)-based metal–organic framework: the sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2019
Accepted
05 Feb 2020
First published
06 Feb 2020

New J. Chem., 2020,44, 4011-4022

A new 3D four-fold interpenetrated dia-like luminescent Zn(II)-based metal–organic framework: the sensitive detection of Fe3+, Cr2O72−, and CrO42− in water, and nitrobenzene in ethanol

T. Xu, J. Li, Y. Han, A. Wang, K. He and Z. Shi, New J. Chem., 2020, 44, 4011 DOI: 10.1039/C9NJ06056A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements