Jump to main content
Jump to site search


Carbon nanotubes reinforced functionalized Styrene maleic ahydride copolymer as advanced electrode materials for efficient energy storage applications

Abstract

In the wake of the global energy crisis, innovative materials are being developed to alleviate the energy shortage by utilizing the available sources sustainably. The present area of energy storage focuses on materials with high inherent conductivity. The extension of this approach to biocompatible polymers will provide a dual advantage of being environmentally safe and non-toxic along with enhanced electrochemical performance. Here, biocompatible feebly conducting styrene maleic anhydride copolymer has been modified with thiadiazole to enhance its conductivity. Polymer nanocomposites have been prepared by incorporating multi-walled carbon nanotubes in different weight percentages. Modification with thiadiazole has been found to boost the conductivity of the polymer nanocomposite. The structures of the samples have been characterized using UV-Visible Spectroscopy, FTIR spectroscopy and Scanning electron microscopy and Transmission electron microscopy. The electrochemical performance of the samples have been evaluated using cyclic voltammetry, electrochemical impedance spectroscopy and charge-discharge techniques. The modified copolymer shows enhanced specific capacitance which is found to gradually increase on increasing the weight percentage of nanotubes in the polymer matrix up to a maximum loading of 15%. A specific capacitance of 905 F g-1 at 0.5 A g-1 was obtained for 15% loading of nanotubes in the polymer matrix. The samples also exhibit good cycling stability with maximum capacitance retention. The prepared polymer nanocomposites have a potential for use as an efficient eco-friendly energy storage material.

Back to tab navigation

Article information


Submitted
02 Dec 2019
Accepted
09 Feb 2020
First published
10 Feb 2020

New J. Chem., 2020, Accepted Manuscript
Article type
Paper

Carbon nanotubes reinforced functionalized Styrene maleic ahydride copolymer as advanced electrode materials for efficient energy storage applications

S. Chakraborty and M. N.L, New J. Chem., 2020, Accepted Manuscript , DOI: 10.1039/C9NJ05978D

Social activity

Search articles by author

Spotlight

Advertisements