Issue 26, 2020

3-(Benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor via DNA intercalation: design, synthesis, and antitumor activities

Abstract

Twenty-seven 3-(benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives have been designed and synthesized as topoisomerase I inhibitors. The in vitro anti-proliferation evaluation against four human cancer cell lines (MGC-803, HepG-2, T24, and NCI-H460) and one normal cell line (HL-7702) indicated that most of them exhibited potent cytotoxicity. Among them, 5a was identified as the most promising candidate with a low IC50 value of about 2.20 ± 0.14 and was selected for further exploration. Spectroscopic analyses and agarose-gel electrophoresis assays indicated that 5a could interact with DNA and strongly inhibit topoisomerase I (Topo I). Further screening of the Topo I activity of compounds 5b, 5c, 5e, 5f, 5h, 5i, 5j, 5l, and 5n suggested that some of the compounds might exert quite a different cytotoxicity profile to that of 5a. Molecular modeling studies confirmed that 5a adopts a unique mode to interact with DNA and Topo I. Other molecular mechanistic studies suggested that the treatment of MGC-803 cells with 5a induces S phase arrest, up-regulates the pro-apoptotic protein, down-regulates the anti-apoptotic protein, activates caspase-3, and subsequently induces mitochondrial dysfunction so as to induce cell apoptosis. The in vivo efficiency of 5a was also evaluated on MGC-803 xenograft nude mice and the relative tumor growth inhibition was 42.4% at 12 mg kg−1 without an obvious loss in the body weight.

Graphical abstract: 3-(Benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor via DNA intercalation: design, synthesis, and antitumor activities

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2019
Accepted
30 May 2020
First published
04 Jun 2020

New J. Chem., 2020,44, 11203-11214

3-(Benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor via DNA intercalation: design, synthesis, and antitumor activities

J. Yuan, N. Chen, H. Liao, G. Zhang, X. Li, Z. Gu, C. Pan, D. Mo and G. Su, New J. Chem., 2020, 44, 11203 DOI: 10.1039/C9NJ05846J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements