Issue 9, 2020

Multi-responsive drug delivery nanoplatform for tumor-targeted synergistic photothermal/dynamic therapy and chemotherapy

Abstract

To overcome the serious adverse reactions, multidrug resistance and non-specificity towards tumor tissues of conventional chemotherapy drugs in cancer therapy, and the low efficiency of single photodynamic therapy owing to the hypoxic environment inside tumors, we have prepared a “from one to all” multi-mode therapy integrated nanoplatform. GFCDH nanoparticles with fluorescence imaging function were prepared based on tumor-targeting folate-conjugated chitosan loaded with doxorubicin (DOX) and photosensitizer HNPa (FCDH) as the core, and cystine-functionalized graphene oxide as a vehicle. The on–off drug control was activated by stimulation of the endogenous tumor microenvironment to enhance the intracellular multi-responsive drug delivery for tumor-targeted synergistic photothermal therapy, photodynamic therapy and chemotherapy. The drug-loading capacity of DOX and HNPa in GFCDH nanoparticles was up to 5.24% and 5.58%, respectively, and the loaded drugs could be efficiently released by acid stimulation, glutathione (GSH) reduction and near-infrared light induction. In vitro, 87% of the loaded HNPa was released within 72 hours by GSH/acid stimulation, simulating the tumor microenvironment, compared with 20% at a physiological pH of 7.4. Furthermore, it was shown that irradiation with 808 nm light induced increased drug release. GFCDH nanoparticles possessed good photothermal effect and 1O2 quantum yield (ΦΔ = 42.1%) using methylene blue (ΦΔ = 49.1%) as a reference. An MTT assay showed a higher cancer cell toxicity for GFCDH treatment with 808 nm and 700 nm light irradiation compared with single wavelength light irradiation. All the results reveal the promise for applications of this smart strategy to overcome existing barriers in chemotherapy and photodynamic therapy for enhanced anticancer therapy.

Graphical abstract: Multi-responsive drug delivery nanoplatform for tumor-targeted synergistic photothermal/dynamic therapy and chemotherapy

Article information

Article type
Paper
Submitted
12 Nov 2019
Accepted
26 Jan 2020
First published
29 Jan 2020

New J. Chem., 2020,44, 3593-3603

Multi-responsive drug delivery nanoplatform for tumor-targeted synergistic photothermal/dynamic therapy and chemotherapy

X. Qin, Z. Wang, C. Guo and Y. Jin, New J. Chem., 2020, 44, 3593 DOI: 10.1039/C9NJ05650E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements