Jump to main content
Jump to site search

Issue 7, 2020
Previous Article Next Article

Reactivity of hemi-labile pyridyl and pyrimidyl derived chalcogen ligands towards group 10 metal phosphine precursors

Author affiliations

Abstract

A drive to understand the reactivity of hemi-labile organoselenide and telluride ligand systems has made this area of research increasingly popular. For this purpose, various metal systems have been applied. Among them, group 10 metal precursors have been exploited predominantly because the resulting complexes are important as catalytic, semiconductor and supercapacitor materials. The wide applicability of these compounds has driven us to explore the chemistry of N-heterocyclic-based ligand systems. Overall, this research deals with the reactivity of N-heterocyclic dichalcogenides Ar2E2 (Ar = C5H4N, C5H3(3-Me)N, C4H3N2, C4H(4,6-Me)N2; E = Se, Te) and their sodium salts (generated by the reductive cleavage of E–E bonds through NaBH4) towards group 10 metal phosphine precursors via oxidative addition and substitution routes. The oxidative addition reactions of [M(P-P)2] (M = Pd, Pt) and substitution reactions of [MCl2(P-P)] (M = Ni, Pd, Pt) with diorgano dichalcogenide and sodium salts of N-heterocyclic selenolate ligands afforded exclusively mononuclear compounds [M(SeAr)2(P-P)] (M = Ni, Pd, Pt; Ar = C5H4N, C5H3(3-Me)N, C4H3N2, C4H(4,6-Me)N2; P-P = dppe, dppp, dppf), however the pyrimidyl selenolate-derived mononuclear compounds transformed to trinuclear products after prolonged standing in chlorinated solvents. In contrast to the selenium analogues, all probable mono to tri nuclear complexes of tellurium were isolated depending upon the metal and phosphine, and the nature of the solvent. The isolation of various products depended on the comparable bond dissociation energies of the Te–Te and Te–C bonds. Among these, a ferrrocenyl auxiliary phosphine ligand-based mononuclear tellurolate compound [Pd(TeC5H4N)2(dppf)] was used for H2S gas sensor applications. The efficiency of a thin film of this compound was 75% with a sensitivity of down to 5 ppm at room temperature.

Graphical abstract: Reactivity of hemi-labile pyridyl and pyrimidyl derived chalcogen ligands towards group 10 metal phosphine precursors

Back to tab navigation

Article information


Submitted
03 Oct 2019
Accepted
13 Jan 2020
First published
14 Jan 2020

New J. Chem., 2020,44, 2689-2696
Article type
Perspective

Reactivity of hemi-labile pyridyl and pyrimidyl derived chalcogen ligands towards group 10 metal phosphine precursors

R. S. Chauhan, New J. Chem., 2020, 44, 2689
DOI: 10.1039/C9NJ04993B

Social activity

Search articles by author

Spotlight

Advertisements