Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Gold nanonails for surface-enhanced infrared absorption

Author affiliations


Surface-enhanced infrared absorption (SEIRA) can dramatically enhance the vibrational signals of analyte molecules owing to the interaction between plasmons and molecular vibrations. It has huge potential for applications in various detection and diagnostic fields. High-aspect-ratio rod-like metal nanostructures have been the most widely studied nanomaterials for SEIRA. However, nearly all of the rod-like nanostructures reported previously are fabricated using physical methods. They suffer from damping and low areal number densities. In this work, high-aspect-ratio Au nanorods are synthesized, and Au nanonails are prepared through Au overgrowth on the as-prepared Au nanorods. The aspect ratios of the Au nanorods and nanonails can be varied in the range of ∼10 to ∼60, and their longitudinal dipolar plasmon resonance wavelengths can be correspondingly tailored from ∼1.6 to ∼8.3 μm. The Au nanonails exhibit superior SEIRA performance with 4-aminothiophenol used as the probe molecules. They are further used to detect the common biomolecule L-cysteine. Numerical simulations are further performed to understand the experimental results. They match well with the experimental observations, revealing the mechanism of the SEIRA enhancement. Our study demonstrates that colloidal high-aspect-ratio Au nanonails and nanorods can function as SEIRA nanoantennas for highly sensitive molecular detection in various situations.

Graphical abstract: Gold nanonails for surface-enhanced infrared absorption

Back to tab navigation

Supplementary files

Article information

27 Apr 2020
15 Jun 2020
First published
15 Jun 2020

Nanoscale Horiz., 2020, Advance Article
Article type

Gold nanonails for surface-enhanced infrared absorption

H. Yin, N. Li, Y. Si, H. Zhang, B. Yang and J. Wang, Nanoscale Horiz., 2020, Advance Article , DOI: 10.1039/D0NH00244E

Social activity

Search articles by author