Jump to main content
Jump to site search


Interface Engineering of Two-dimensional Transition Metal Dichalcogenides towards Next-Generation Electronic Devices: Recent Advances and Challenges

Abstract

Over the past decade, two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted tremendous research interest for future electronics owing to their atomically thin thickness, compelling properties and various potential applications. However, interface engineering including contact optimization and channel modulations for 2D TMDCs represent fundamental challenges in ultimate performance of ultrathin electronics. This article provides a comprehensive overview of the basic understanding of contacts and channel engineering of 2D TMDCs and emerging electronics benefited from these varying approaches. In particular, we elucidate multifarious contact engineering approaches such as edge contact, phase engineering and metal transfer to suppress the Fermi level pinning effect at the metal/TMDC interfaces, various channel treatment avenues such as van der Waals heterostructures, surface charge transfer doping to modulate the device properties, and as well the novel electronics constructed by interface engineering such as diodes, circuits and memories. Finally, we conclude this review by addressing the current challenges facing 2D TMDCs towards next-generation electronics and offering our insights on future directions of this field.

Back to tab navigation

Article information


Submitted
23 Nov 2019
Accepted
05 Feb 2020
First published
06 Feb 2020

Nanoscale Horiz., 2020, Accepted Manuscript
Article type
Review Article

Interface Engineering of Two-dimensional Transition Metal Dichalcogenides towards Next-Generation Electronic Devices: Recent Advances and Challenges

W. Liao, S. Zhao, F. Li, C. Wang, Y. Ge, H. Wang, S. Wang and H. Zhang, Nanoscale Horiz., 2020, Accepted Manuscript , DOI: 10.1039/C9NH00743A

Social activity

Search articles by author

Spotlight

Advertisements