Issue 10, 2020

Graphene quantum dots in photodynamic therapy

Abstract

Graphene quantum dots (GQDs) have shown great promise in a variety of medical applications. Recently, it has been found that GQDs are also beneficial for photodynamic therapy (PDT). However, the findings of GQDs as PDT agents have been controversial in the literature. Herein, we investigate the photoactivity of single-atomic-layered GQDs by examining their ability to generate singlet oxygen (1O2) under irradiation and their effects on the photoactivity of photosensitizers. We demonstrate that the GQDs with lateral sizes of ∼5 or 20 nm are photo-inactive for they cannot generate 1O2 under irradiation of either a 660 nm laser (105 mW cm−2) or a halogen light. Moreover, the GQDs inhibit the photoactivity of two classical photosensitizers, namely, methylene blue and methylene violet. The stronger interaction between the GQDs and the photosensitizer results in greater inhibition of GQDs. Besides, the large-sized GQDs exhibit stronger inhibition than the small-sized GQDs. The inhibitory effect of the GQDs on the photoactivity of photosensitizers is consistent with their photo-cytotoxicity. These results indicate that the single-atomic-layered GQDs are not potential PDT agents, but they may be helpful for photosensitizers by delivering them into the cells. The discrepancy between the current work and the literature is probably associated with the GQDs used.

Graphical abstract: Graphene quantum dots in photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
31 Jul 2020
Accepted
16 Sep 2020
First published
17 Sep 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 4961-4967

Graphene quantum dots in photodynamic therapy

J. Chen, W. Wu, F. Zhang, J. Zhang, H. Liu, J. Zheng, S. Guo and J. Zhang, Nanoscale Adv., 2020, 2, 4961 DOI: 10.1039/D0NA00631A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements