Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Cellulose paper support with dual-layered nano–microstructures for enhanced plasmonic photothermal heating and solar vapor generation

Author affiliations

Abstract

Plasmonic nanoparticles, such as gold nanoparticles (AuNPs), have been actively applied in solar vapor generation for seawater desalination and water purification, owing to their photothermal heating performances. Such nanoparticles have been frequently anchored within porous supporting materials to ensure easy handling and water absorption. However, there has been limited progress in improving the transport efficiency of light to nanoparticles within porous supports to achieve more effective photothermal heating. Here, we show an enhanced light absorption of AuNPs by supporting on a cellulose paper with tailored porous structures for efficient photothermal heating. The paper consists of AuNP-anchored cellulose nanofibers and cellulose pulp as the top and bottom layers, respectively, which provides dual-layered porous nano–microstructures in the perpendicular direction. Then, the bottom layer with pulp-derived microstructures reflects the transmitted light back to AuNPs within the top layer, which improves their light absorptivity. Thus, under 1 sun illumination, the dual-layered paper demonstrates superior performance in photothermal heating (increases from 28 °C to 46 °C) and solar vapor generation (1.72 kg m−2 h−1) compared with the single-layered AuNP-anchored cellulose nanofiber paper even at the same AuNP content. Furthermore, the water evaporation rate per AuNP content of the dual-layered paper is more than 2 times higher than those of the state-of-the-art AuNP-anchored porous materials under the same light irradiation. This strategy enables the efficient use of precious plasmonic nanoparticles for further development of solar vapor generation.

Graphical abstract: Cellulose paper support with dual-layered nano–microstructures for enhanced plasmonic photothermal heating and solar vapor generation

Back to tab navigation

Supplementary files

Article information


Submitted
27 Feb 2020
Accepted
21 Apr 2020
First published
22 Apr 2020

This article is Open Access

Nanoscale Adv., 2020, Advance Article
Article type
Paper

Cellulose paper support with dual-layered nano–microstructures for enhanced plasmonic photothermal heating and solar vapor generation

Y. Huang, Y. Morishita, K. Uetani, M. Nogi and H. Koga, Nanoscale Adv., 2020, Advance Article , DOI: 10.1039/D0NA00163E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements