Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Fulleropyrrolidine-functionalized ceria nanoparticles as a tethered dual nanosystem with improved antioxidant properties

Author affiliations

Abstract

Dual-tethered nanosystems which combine different properties at the nano scale represent a new fascinating frontier of research. In the present work, we present an example of a dual nanosystem designed to enhance the radical scavenging performances. Fulleropyrrolidine has been bonded to cerium oxide nanoparticles (nanoceria) to form a dual tethered system. Fulleropyrrolidine, bearing a silyl-alkoxide group, has been chemically bonded to the nanoceria surface, providing unprecedented antioxidant activity. This effect has been evaluated using an L929 mouse fibroblast cell line exposed to UV light. The fulleropyrrolidine molecules tethered to nanoceria enhance the radical scavenging properties of the oxide. At the same time, fulleropyrrolidine mitigates the potential toxicity of nanoceria at high doses. On the other hand, cerium oxide nanoparticles provide a strong hydrophilicity to the dual nanosystem, ensuring the administration in a cellular environment and preventing macroscopic aggregation of fulleropyrrolidine. The rational assembly of two different components in one nanosystem appears as a promising route for the development of “smarter” medical and cosmetic devices.

Graphical abstract: Fulleropyrrolidine-functionalized ceria nanoparticles as a tethered dual nanosystem with improved antioxidant properties

Back to tab navigation

Supplementary files

Article information


Submitted
17 Jan 2020
Accepted
12 Apr 2020
First published
13 Apr 2020

This article is Open Access

Nanoscale Adv., 2020, Advance Article
Article type
Paper

Fulleropyrrolidine-functionalized ceria nanoparticles as a tethered dual nanosystem with improved antioxidant properties

A. Pinna, E. Cali, G. Kerherve, G. Galleri, M. Maggini, P. Innocenzi and L. Malfatti, Nanoscale Adv., 2020, Advance Article , DOI: 10.1039/D0NA00048E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements