Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



3D hierarchical self-supported NiO/Co3O4@C/CoS2 nanocomposites as electrode materials for high-performance supercapacitors

Author affiliations

Abstract

Multi-dimensional nanomaterials have drawn great interest for application in supercapacitors due to their large accessible surface area. However, the achievements of superior rate capability and cycle stability are hindered by their intrinsic poor electronic/ionic conductivity and the erratic structure. Herein, we develop a three-dimensional hierarchical self-supported NiO/Co3O4@C/CoS2 hybrid electrode, in which NiO/Co3O4 nanosheets are in situ grown on a nickel foam substrate and combined with CoS2 nanospheres through a carbon medium. The hybrid electrode has a high specific capacity of ∼1025 C g−1 at 1 A g−1 with a superior rate performance of ∼74% capacity retention even at a current density of 30 A g−1. Moreover, the assembled NiO/Co3O4@C/CoS2//AC hybrid supercapacitor achieves excellent performance with a maximum voltage of 1.64 V and a high energy density of 62.83 W h kg−1 at a power density of 824.99 W kg−1 and excellent cycle stability performance with a capacity retention of ∼92% after 5000 cycles. The high electrochemical performance of the hybrid supercapacitor is mainly attributed to the porous structure of the NiO/Co3O4@C nanosheets and CoS2 nanospheres and intimate integration of active species. The rational strategy for the combination of various earth-abundant nanomaterials paves a new way for energy storage materials.

Graphical abstract: 3D hierarchical self-supported NiO/Co3O4@C/CoS2 nanocomposites as electrode materials for high-performance supercapacitors

Back to tab navigation

Supplementary files

Article information


Submitted
08 Jan 2020
Accepted
01 May 2020
First published
01 May 2020

This article is Open Access

Nanoscale Adv., 2020, Advance Article
Article type
Paper

3D hierarchical self-supported NiO/Co3O4@C/CoS2 nanocomposites as electrode materials for high-performance supercapacitors

X. Zhu, M. Sun, R. Zhao, Y. Li, B. Zhang, Y. Zhang, X. Lang, Y. Zhu and Q. Jiang, Nanoscale Adv., 2020, Advance Article , DOI: 10.1039/D0NA00013B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements