Jump to main content
Jump to site search


Graphene nanocrystals in CO2 photoreduction with H2O for fuel production

Author affiliations

Abstract

Graphene nanocrystals can utilize solar light and are valuable in cases where electricity is lacking due to their chemical stability during the photocatalytic process, low cost and non-toxicity. However, because of the large band gap, ultraviolet light irradiation can barely excite graphene, which limits its application in the environment. CO2 photoreduction through the visible light-responsive photocatalytic performance of graphene nanocrystals has recently been the focus of research in nanoscience due to the ability to convert pollutants into CO2 and H2O for environmental applications such as energy, environmental purification and wastewater treatment. This paper highlights the present improvements in CO2 photoreduction with H2O through the visible light-responsive photocatalytic performance of graphene nanocrystals via the development of structural modification strategies, solar harvesting, methods of synthesis and solar light catalytic mechanisms.

Graphical abstract: Graphene nanocrystals in CO2 photoreduction with H2O for fuel production

Back to tab navigation

Article information


Submitted
03 Dec 2019
Accepted
15 Jan 2020
First published
16 Jan 2020

This article is Open Access

Nanoscale Adv., 2020, Advance Article
Article type
Minireview

Graphene nanocrystals in CO2 photoreduction with H2O for fuel production

W. K. Darkwah, G. K. Teye and Y. Ao, Nanoscale Adv., 2020, Advance Article , DOI: 10.1039/C9NA00756C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements