Issue 4, 2020

Paradoxical combination of saturable absorption and reverse-saturable absorption in plasmon semiconductor nanocrystals

Abstract

In heavily doped semiconductor nanocrystal systems, high-order nonlinearities including third-order nonlinearity and fifth-order nonlinearity can be tailored to manipulate light on the nanoscale due to the semiconductor intrinsic absorption and localized surface plasmon resonances. Here, by exploiting the nonlinear optical properties of broadly infrared plasmons in solution-processed aluminum-doped ZnO nanocrystals (AZO NCs) with a wide band-gap, we demonstrate that the competition between plasma ground-state bleaching (third-order nonlinearity) and three-photon absorption (fifth-order nonlinearity) is responsible for the transition between saturable absorption and reverse saturable absorption. Upon increasing the pump intensity, the third-order nonlinear coefficient decreases from −5.85 × 102 cm GW−1 to −7.89 × 10−10 cm GW−1, while the fifth-order nonlinear coefficient increases from 3.08 × 10−9 cm3 GW−2 to 15.8 cm3 GW−2. With aluminum-doped ZnO nanocrystals as a Q-switch, a pulsed fiber laser operating at the C band (optical communication band) was constructed. Furthermore, the relatively small temperature fluctuations (7.13 K) of the Q-switch indicate its application prospects in all-optical systems. Investigations on the intrinsic mechanism between high-order nonlinearity and the nonlinear absorption can promote the further development and applications of heavily doped oxide semiconductors in advanced nanophotonics.

Graphical abstract: Paradoxical combination of saturable absorption and reverse-saturable absorption in plasmon semiconductor nanocrystals

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2019
Accepted
24 Feb 2020
First published
25 Feb 2020
This article is Open Access
Creative Commons BY-NC license

Nanoscale Adv., 2020,2, 1676-1684

Paradoxical combination of saturable absorption and reverse-saturable absorption in plasmon semiconductor nanocrystals

X. Tian, R. Wei, D. Yang and J. Qiu, Nanoscale Adv., 2020, 2, 1676 DOI: 10.1039/C9NA00694J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements