Jump to main content
Jump to site search


Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction

Author affiliations

Abstract

Rationally designing efficient, low-cost and stable catalysts toward the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR) is of significant importance to the development of renewable energy technologies. In this work, we have systematically investigated a series of potentially efficient and stable single late transition metal atom doped phthalocyanines (TM@Pcs, TM = Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir and Pt) as single-atom catalysts (SACs) for applications toward the OER and ORR through a computational screening approach. Our calculations indicate that TM atoms can tightly bind with Pc monolayers with high diffusion energy barriers to prevent the isolated atoms from clustering. The interaction strength between intermediates and TM@Pc governs the catalytic activities for the OER and ORR. Among all the considered TM@Pc catalysts, Ir@Pc and Rh@Pc were found to be efficient OER electrocatalysts with overpotentials ηOER of 0.41 and 0.44 V, respectively, and for the ORR, Rh@Pc exhibits the lowest overpotential ηORR of 0.44 V followed by Ir@Pc (0.55 V), suggesting that Rh@Pc is an efficient bifunctional catalyst for both the OER and ORR. Moreover, it is worth noting that the Rh@Pc catalyst can remain stable against dissolution under the pH = 0 condition. Ab initio molecular dynamic calculations suggest that Rh@Pc could remain stable at 300 K. Our findings highlight a novel family of two-dimensional (2D) materials as efficient and stable SACs and offer a new strategy for catalyst design.

Graphical abstract: Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction

Back to tab navigation

Supplementary files

Article information


Submitted
11 Oct 2019
Accepted
29 Nov 2019
First published
05 Dec 2019

This article is Open Access

Nanoscale Adv., 2020, Advance Article
Article type
Paper

Computational screening of transition metal-doped phthalocyanine monolayers for oxygen evolution and reduction

Y. Zhou, G. Gao, W. Chu and L. Wang, Nanoscale Adv., 2020, Advance Article , DOI: 10.1039/C9NA00648F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements