Jump to main content
Jump to site search

Issue 1, 2020
Previous Article Next Article

Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis

Author affiliations

Abstract

Intermetallics are long-range-ordered alloys traditionally synthesized by annealing nanoparticles of a random alloy, which results in the sintering of the nanoparticles and leads to the formation of polydispersed samples. It thus remains a challenge to achieve a monodispersion of tiny intermetallics. In the current work, ultra-small monodisperse intermetallic NiZn nanoparticles were synthesized based on a low-temperature solution chemistry route involving the chemical conversion of metal nanoparticles into an ordered alloy using an organometallic zinc precursor. During the transformation of single metal nanoparticles into the corresponding alloy, the particles retained their morphology. The resulting ordered alloy made up of earth-abundant materials demonstrated high electrocatalytic performance for the oxygen evolution reaction (OER) with a low overpotential of 283 mV at a current density of 10 mA cm−2 and a small Tafel slope of 73 mV dec−1, along with excellent stability and durability. The prepared intermetallic NiZn exhibited outstanding OER efficacy, better than those of a Ni0.7Zn0.3 alloy, pure Ni nanoparticles and even state-of-the art RuO2. The atomic ordering as well as the modification of the electronic structure of Ni upon becoming alloyed with Zn, together with an atomic-scale synergistic effect produced from Ni and Zn, led to the enhanced intrinsic catalytic activity. The present findings point to a general route to produce nanoscale tiny alloys and also provide excellent electrocatalysts having exceptional energy conversion efficiency.

Graphical abstract: Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis

Back to tab navigation

Supplementary files

Article information


Submitted
30 Sep 2019
Accepted
19 Nov 2019
First published
27 Nov 2019

This article is Open Access

Nanoscale Adv., 2020,2, 417-424
Article type
Paper

Ultra-small intermetallic NiZn nanoparticles: a non-precious metal catalyst for efficient electrocatalysis

A. Samanta, S. Das and S. Jana, Nanoscale Adv., 2020, 2, 417
DOI: 10.1039/C9NA00611G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements