Jump to main content
Jump to site search


High throughput study on magnetic ground states with Hubbard U corrections in transition metal dihalide monolayers

Author affiliations

Abstract

We present a high throughput study of the magnetic ground states for 90 transition metal dihalide monolayers TMX2 using density functional theory based on a collection of Hubbard U values. Stable geometrical phases between 2H and 1T are first determined. Spin-polarized calculations show that 50 out of 55 magnetic TMX2 monolayers are energetically prone to the 1T phase. Further, the magnetic ground states are determined by considering four local spin models with respect to different U values. Interestingly, 23 out of 55 TMX2 monolayers exhibit robust magnetic ground orderings which will not be changed by the U values. Among them, NiCl2 with a magnetic moment of 2 μB is a ferromagnetic (FM) insulator, while the VX2, MnX2 (X = Cl, Br and I), PtCl2 and CoI2 monolayers have noncollinear antiferromagnetic (120°-AFM) ground states with a tiny in-plane magnetic anisotropic energy, indicating flexible magnetic orientation rotation. The exchange parameters for both robust FM and 120°-AFM systems are analyzed in detail with the Heisenberg model. Our high-throughput calculations give a systematic study of the electronic and magnetic properties of TMX2 monolayers, and these two-dimensional materials with versatile magnetic behavior may have great potential for spintronic applications.

Graphical abstract: High throughput study on magnetic ground states with Hubbard U corrections in transition metal dihalide monolayers

Back to tab navigation

Supplementary files

Article information


Submitted
18 Sep 2019
Accepted
03 Dec 2019
First published
04 Dec 2019

This article is Open Access

Nanoscale Adv., 2020, Advance Article
Article type
Paper

High throughput study on magnetic ground states with Hubbard U corrections in transition metal dihalide monolayers

X. Li, Z. Zhang and H. Zhang, Nanoscale Adv., 2020, Advance Article , DOI: 10.1039/C9NA00588A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements