Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Probing cell membrane damage using a molecular rotor probe with membrane-to-nucleus translocation

Author affiliations

Abstract

Damage to cell membranes, the outermost protection layer, is fatal to cells. However, precisely monitoring and in situ reporting cell membrane damage is not trivial. Herein, we present a molecular rotor probe, TPAE2, which can effectively bind to DNA and 1,2-dioleoyl-sn-glycero-3-phosphocholine in solution. Due to the light-up imaging characteristics of the molecular rotor, TPAE2 offers ultrafast and wash-free staining of plasma membrane with 160-fold fluorescence “turn-on” and excellent photostability. Once the membrane is damaged, TPAE2 can light-up the nucleus as a signal reporter. The cascade imaging of the cell membrane and nucleus using TPAE2 enabled real-time tracking of the whole process of cell apoptosis. What's more, under irradiation, TPAE2 stained on the cell membrane could penetrate cells rapidly and selectively stain the nucleus, self-reporting the cancer cell ablation process. This is the first example that a single molecule with multiple functions can light up the nucleus as an indication of cell membrane damage. The membrane-to-nucleus translocation strategy opens up a new avenue for the design of membrane damage diagnosis probes for biomedical applications.

Graphical abstract: Probing cell membrane damage using a molecular rotor probe with membrane-to-nucleus translocation

Back to tab navigation

Supplementary files

Article information


Submitted
14 Jul 2020
Accepted
01 Oct 2020
First published
02 Oct 2020

Mater. Horiz., 2020, Advance Article
Article type
Communication

Probing cell membrane damage using a molecular rotor probe with membrane-to-nucleus translocation

K. Wang, G. Qi, H. Chu, X. Chao, L. Liu, G. Li, Q. Cao, Z. Mao and B. Liu, Mater. Horiz., 2020, Advance Article , DOI: 10.1039/D0MH01141J

Social activity

Search articles by author

Spotlight

Advertisements