Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Prediction of a two-dimensional high-TC f-electron ferromagnetic semiconductor

Author affiliations

Abstract

Two-dimensional (2D) ferromagnetic semiconductors (FMSs) exhibit novel spin-dependent electronic and optical properties, opening up exciting opportunities for nanoscale spintronic devices. However, experimentally confirmed 2D FMSs based on transition metal ions are rather limited and their performances are not satisfactory, e.g. typically with low Curie temperatures and small magnetic signals. Different from most known 2D magnets based on d-electrons, here an exotic 2D FMS based on rare-earth ions with f-electrons, a GdI2 monolayer, is predicted to have a large magnetization (8 μB f.u.−1), whose ferromagnetism can survive near room temperature (241 K). In addition, with a small exfoliation energy from its layered van der Waals (vdW) bulk, this GdI2 monolayer holds excellent dynamical and thermal stabilities, making our prediction promising in experiments. Our prediction not only offers a compelling FMS for spintronics, but also provides an alternative route to acquire more high-performance 2D FMSs, going beyond pure d-electron compounds.

Graphical abstract: Prediction of a two-dimensional high-TC f-electron ferromagnetic semiconductor

Back to tab navigation

Supplementary files

Article information


Submitted
04 Feb 2020
Accepted
31 Mar 2020
First published
01 Apr 2020

Mater. Horiz., 2020, Advance Article
Article type
Communication

Prediction of a two-dimensional high-TC f-electron ferromagnetic semiconductor

B. Wang, X. Zhang, Y. Zhang, S. Yuan, Y. Guo, S. Dong and J. Wang, Mater. Horiz., 2020, Advance Article , DOI: 10.1039/D0MH00183J

Social activity

Search articles by author

Spotlight

Advertisements