Jump to main content
Jump to site search


Recent advances in anodic interface engineering for solid-state lithium-metal batteries

Author affiliations

Abstract

Lithium (Li) metal is recognized as the “Holy Grail” in the energy storage field because of its high specific capacity and ultralow anodic potential. To realize high-safety and high-energy-density rechargeable batteries, the marriage of Li metal and high-safety solid-state electrolytes (SSEs) may be a promising and irreplaceable choice. In this case, various advanced Li-containing and Li-free cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM811), S and O2, can be adopted to further improve the energy density of solid-state Li-metal batteries (SSLMBs). However, regardless of the complex interface problems between different cathodes and SSEs, the poor anodic interface between the Li metal and SSEs has become the critical obstacle for the commercial application of SSLMBs, mainly including (i) poor interfacial contact and dendrite growth, (ii) chemical/electrochemical instability and (iii) chemo-mechanical expansion. In this review, we analyze the aforementioned anodic interface problems in SSLMBs. Based on these facts, advanced strategies to ameliorate the anodic interface by surface modification, interfacial structural design within SSEs and the Li metal, composition optimization of SSEs and the Li metal, and external methods such as pressure control and high temperature are systematically discussed. In situ characterization technologies are also introduced to understand the dynamic evolution of anodic interfaces. Moreover, we outline the future perspectives of anodic interface engineering for SSLMBs.

Graphical abstract: Recent advances in anodic interface engineering for solid-state lithium-metal batteries

Back to tab navigation

Article information


Submitted
10 Jan 2020
Accepted
02 Mar 2020
First published
03 Mar 2020

Mater. Horiz., 2020, Advance Article
Article type
Review Article

Recent advances in anodic interface engineering for solid-state lithium-metal batteries

C. Sun, Y. Ruan, W. Zha, W. Li, M. Cai and Z. Wen, Mater. Horiz., 2020, Advance Article , DOI: 10.1039/D0MH00050G

Social activity

Search articles by author

Spotlight

Advertisements