Jump to main content
Jump to site search


Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbI3 perovskites

Author affiliations

Abstract

The intrinsically poor stability of three-dimensional (3D) α-CsPbI3 perovskites (PVSKs) greatly hinders their application in solar cells and optoelectronics. Here, we propose a new series of compounds, quasi-2D Dion–Jacobson (DJ) CsPbI3 PVSKs, through density functional theory (DFT) calculation. The material design is based on periodic intercalation of tailored ethylenediamine cations (EDA2+) between the inorganic layers. The resultant quasi-2D (EDA)Csn−1PbnI3n+1 PVSKs exhibit fundamentally enhanced stability, owing to the strong I–H interaction of diamine cations with a shortened interlayer distance (∼3.5 Å). Their bandgaps can be widely and linearly tailored from 2.150 (n = 1) to 1.476 eV (n = ∞) with the increase of the inorganic layer number (n). In comparison to the conventional 3D counterparts, they have smaller effective masses, lower exciton energies and larger dielectric constants. Furthermore, the highest power conversion efficiency (PCE) is calculated to be 20.9% (n = 50), evidencing that the quasi-2D DJ CsPbI3 PVSKs could be an excellent candidate for exciting applications in optoelectronic devices.

Graphical abstract: Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbI3 perovskites

Back to tab navigation

Supplementary files

Article information


Submitted
08 Nov 2019
Accepted
02 Jan 2020
First published
03 Jan 2020

Mater. Horiz., 2020, Advance Article
Article type
Communication

Organic intercalation engineering of quasi-2D Dion–Jacobson α-CsPbI3 perovskites

Z. Fang, M. Shang, Y. Zheng, T. Zhang, Z. Du, G. Wang, X. Duan, K. Chou, C. Lin, W. Yang, X. Hou and T. Wu, Mater. Horiz., 2020, Advance Article , DOI: 10.1039/C9MH01788G

Social activity

Search articles by author

Spotlight

Advertisements