Jump to main content
Jump to site search


Graphitic carbon nitride and polymers: a mutual combination for advanced properties

Author affiliations

Abstract

The sheet-like material graphitic carbon-nitride (g-C3N4) is one of the most promising metal-free photocatalysts and utilized for various purposes, e.g. energy conversion, waste water remediation or organic synthesis. g-C3N4 features a suitable band gap in the visible light range and outstanding physicochemical stability. However, g-C3N4 features drawbacks such as structural disorder, low conductivity, poor dispersibility and in turn low processability. Amongst the strategies to improve g-C3N4 properties, combination with polymers is a promising avenue toward advanced materials. The present critical review highlights the development and investigation of g-C3N4/polymer combination, including (1) g-C3N4 as photoinitiator for polymer snythesis, (2) polymer modified g-C3N4 for improved dispersibility, (3) g-C3N4/polymer hybrid materials fabricated via physical or covalent attachment and (4) g-C3N4 based hydrogels. The fabrication methods and application of these areas will be critically reviewed and the advantage of g-C3N4/polymer combination comprehensively presented. Moreover, the broad range of applications is highlighted, e.g. photocatalysis, batteries, biosensors, H2 evolution and films. Finally, the review will conclude with a summary and perspective on future directions as well as current challenges of this research area in order to stimulate new research regarding the design and construction of g-C3N4/polymer materials.

Graphical abstract: Graphitic carbon nitride and polymers: a mutual combination for advanced properties

Back to tab navigation

Publication details

The article was received on 19 Sep 2019, accepted on 19 Nov 2019 and first published on 19 Nov 2019


Article type: Review Article
DOI: 10.1039/C9MH01497G
Mater. Horiz., 2020, Advance Article
  • Open access: Creative Commons BY license
  •   Request permissions

    Graphitic carbon nitride and polymers: a mutual combination for advanced properties

    Q. Cao, B. Kumru, M. Antonietti and B. V. K. J. Schmidt, Mater. Horiz., 2020, Advance Article , DOI: 10.1039/C9MH01497G

    This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements