Jump to main content
Jump to site search

Issue 7, 2020
Previous Article Next Article

Computational insights into selective CO2 hydrogenation to CH3OH catalysed by ZnO based nanocages

Author affiliations

Abstract

Cu and ZnO based nanostructures were extensively studied for CO2 hydrogenation reaction. In this study, we have performed density functional theory (DFT) calculations for understanding the CO2 hydrogenation reaction mechanism on ZnO and Cu doped ZnO based nanocages (NCs). Two different ZnO based NCs and three different Cu doped ZnO based NCs have been considered for the investigation. The stabilities of the NCs have been investigated using the formation energy, cohesive energy, phonon dispersion and ab initio molecular dynamics (AIMD) calculations. Our calculated adsorption energy values show that the CO2 hydrogenation reaction intermediates adsorb strongly on the NCs compared to that on the bulk Cu(111), Cu(111) monolayer and Cu nanocluster. Besides, the detailed mechanistic investigation and the calculated ZPE corrected reaction energy values show that the ZnO and Cu doped ZnO based NCs show excellent selectivity for CH3OH. These catalysts also work under very low working potentials (0.55 V for ZnO NC and 0.39 V for Cu doped ZnO NC) compared to the bulk Cu(111), Cu(111) monolayer and Cu nanocluster. Hence, Cu@ZnO based nanocages can be highly efficient and selective catalysts compared to ZnO based nanocages and Cu based catalysts for CO2 hydrogenation to CH3OH. Moreover, the influence of *COOH and *COH coverage for ZnO NC, *COH and *CHOH coverage for Cu@ZnO NC on adsorption energy values show that the catalysts can be used at high surface coverage.

Graphical abstract: Computational insights into selective CO2 hydrogenation to CH3OH catalysed by ZnO based nanocages

Back to tab navigation

Supplementary files

Article information


Submitted
15 Apr 2020
Accepted
19 Aug 2020
First published
19 Aug 2020

This article is Open Access

Mater. Adv., 2020,1, 2300-2309
Article type
Paper

Computational insights into selective CO2 hydrogenation to CH3OH catalysed by ZnO based nanocages

S. C. Mandal and B. Pathak, Mater. Adv., 2020, 1, 2300
DOI: 10.1039/D0MA00208A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements