Issue 3, 2020

Electrocatalytic properties of {Mo3S4}-based complexes with regard to the hydrogen evolution reaction and application to PEM water electrolysis

Abstract

We report on the synthesis and the electrochemical characterization of two [Mo3S4]4+ nanoclusters, [Mo3S4(acacbut)3]Cl and [Mo3S4–Pd(acacbut)3]Cl. Their electrochemical properties have been measured in solution in organic and in aqueous media, by cyclic voltammetry, linear sweep potential voltammetry and chrono-coulometry at controlled potential. The different redox couples have been identified. Their electrochemical activity with regard to the hydrogen evolution reaction (HER) has been determined by dropwise addition of controlled amounts of formic acid in acetonitrile. The turn over frequency of the two compounds has been determined to compare their HER activity. Then the two compounds have been functionalized onto two different carbonaceous substrates (graphene and carbon black) of practical interest for applications in water electrolysis cells. The polarization curves and Tafel plots have been measured in 0.1 M H2SO4 aqueous solutions. Finally, the two complexes have been implemented at the cathode of a PEM water electrolysis cell. The polarization curves have been measured and compared to those obtained with metallic platinum under similar operating conditions.

Graphical abstract: Electrocatalytic properties of {Mo3S4}-based complexes with regard to the hydrogen evolution reaction and application to PEM water electrolysis

Supplementary files

Article information

Article type
Paper
Submitted
27 Mar 2020
Accepted
12 May 2020
First published
12 May 2020
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2020,1, 430-440

Electrocatalytic properties of {Mo3S4}-based complexes with regard to the hydrogen evolution reaction and application to PEM water electrolysis

J. A. Cheikh, R. Zakari, A. C. Bhosale, A. Villagra, N. Leclerc, S. Floquet, P. C. Ghosh, A. Ranjbari, E. Cadot, P. Millet and L. Assaud, Mater. Adv., 2020, 1, 430 DOI: 10.1039/D0MA00138D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements