Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 2, 2020
Previous Article Next Article

Tunable electronic and magnetic properties of monolayer and bilayer Janus Cr2Cl3I3: a first-principles study

Author affiliations

Abstract

Recently, novel two-dimensional (2D) magnetic materials have drawn enormous research attention due to their interesting tunable electronic and magnetic properties. However, 2D Janus materials with intrinsic magnetism are rare. We investigate the geometric and electronic properties of monolayer (ML) and bilayer (BL) intrinsic magnetic Janus Cr2Cl3I3 using first-principles calculations. We find that ML Janus Cr2Cl3I3 is a magnetic semiconductor with the band gaps for the spin-α and spin-β channels being 2.11 and 3.83 eV, respectively. The magnetic ground state of ML Cr2Cl3I3 can be effectively modulated by biaxial strain from the ferromagnetic (FM) state to the antiferromagnetic (AFM) state. Meanwhile, ML Cr2Cl3I3 experiences an electronic phase transition from a half semiconductor (HSC) to a bipolar magnetic semiconducor (BMS) and finally a spin-unpolarized semiconductor with increasing strain. More interestingly, as the biaxial strain increases, the Curie temperature for the FM ground state increases from 36.3 K to 49.2 K. As for bilayer (BL) Cr2Cl3I3, the stacking order could effectively affect the magnetic and electronic properties. The most stable stacking order is AB-II type, followed by AA-II, AB-ClI, AA-ClI, AB-ClCl and AA-ClCl stacking orders. They are all spin-polarized BMS. The magnetic and electronic properties of BL Cr2Cl3I3 change with different stacking orders, possibly due to the quantum confinement effect and interlayer interactions. The stability of ML Cr2Cl3I3 is confirmed by the phonon spectrum and molecular dynamics simulations. The tunable electronic properties together with intrinsic ferromagnetism enrich the diversity of Janus 2D Cr2Cl3I3, which has potential applications in spintronic devices.

Graphical abstract: Tunable electronic and magnetic properties of monolayer and bilayer Janus Cr2Cl3I3: a first-principles study

Back to tab navigation

Supplementary files

Article information


Submitted
07 Mar 2020
Accepted
19 Apr 2020
First published
20 Apr 2020

This article is Open Access

Mater. Adv., 2020,1, 244-253
Article type
Paper

Tunable electronic and magnetic properties of monolayer and bilayer Janus Cr2Cl3I3: a first-principles study

Z. Guan, N. Luo, S. Ni and S. Hu, Mater. Adv., 2020, 1, 244
DOI: 10.1039/D0MA00085J

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements