Issue 22, 2020

Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer

Abstract

The use of microfluidics on synchrotron X-ray beamlines represents an advanced sample preparation and delivery platform for state-of-the-art X-ray characterization of micro-samples. The recent developments of 3D printing technologies have opened possibilities for rapid fabrication of complex microfluidic devices. One of the major challenges in 3D printing of microfluidic devices using a digital light processing (DLP) desktop printer is that the static liquid resin trapped in the channels, once the “ceiling” is printed, still receives small doses of light through the subsequently printed layers. This easily triggers partial polymerisation of the resin which impedes its flushing out of the channels after completion of the printing session. We show here that it is possible to gain better control over the resin polymerisation and improve the quality of the microfluidic devices by efficiently reducing the penetration depth of the UV LED light through wavelength selection combined with a careful choice of absorber and photo-initiator materials. We produced and tested several structures using a slightly modified desktop printer at 385 nm wavelength with 37 × 37 μm2 pixel resolution at a printed layer thickness of 25 μm. The structures include particle filters, mixers, droplet generators and droplet storage traps with features below 100 μm. We demonstrate crystallisation of model inorganic and organic compounds in trapped droplets and assess the feasibility of in-device X-ray diffraction experiments. This research opens the path for the use of 3D printed microfluidic devices on X-ray beamlines.

Graphical abstract: Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer

Supplementary files

Article information

Article type
Paper
Submitted
29 Jul 2020
Accepted
06 Oct 2020
First published
13 Oct 2020

Lab Chip, 2020,20, 4128-4140

Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer

P. J. E. M. van der Linden, A. M. Popov and D. Pontoni, Lab Chip, 2020, 20, 4128 DOI: 10.1039/D0LC00767F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements