Optical micro/nanofibre embedded soft film enables multifunctional flow sensing in microfluidic chips†
Abstract
Microfluidic chips have been proven to be a powerful technical platform for chemical synthesis, biomedical research, and optofluidic devices. Here, we report a smart microfluidic chip (SMC) with multiple functionality to sense the status or incidents occurring on chip. The SMC is enabled by a soft, flexible and attachable film embedded with optical micro/nanofibres (MNFs), which is highly compatible with microfluidic chips fabricated by lithography. Based on the transition from guided modes to radiation modes of the MNFs, simultaneous flow rate detection in multiple channels is demonstrated on a SMC with high sensitivity. The MNF-enabled SMC is also capable of monitoring the transportation and morphology of microfluidic droplets with fast response. In addition, real-time counting of the magnetic droplets is performed to verify the SMC's anti-electromagnetic interference ability. This SMC is unique and may play an important role in microreactors, droplet microfluidics and optofluidic sensors.