Issue 2, 2020

Extended culture and imaging of normal and regenerating adult zebrafish hearts in a fluidic device

Abstract

Myocardial infarction and heart failure are leading causes of death worldwide, in large part because adult human myocardium has extremely limited regeneration capacity. Zebrafish are a powerful model for identifying new strategies for human cardiac repair because their hearts regenerate after relatively severe injuries. Zebrafish are also relatively scalable and compatible with many genetic tools. However, characterizing the regeneration process in live adult zebrafish hearts has proved challenging because adult fish are opaque, preventing live imaging in vivo. An alternative strategy is to explant and culture intact adult zebrafish hearts and investigate them ex vivo. However, explanted hearts maintained in conventional culture conditions experience rapid declines in morphology and physiology. To overcome these limitations, we designed and fabricated a fluidic device for culturing explanted adult zebrafish hearts with constant media perfusion that is also compatible with live imaging. We then compared the morphology and calcium activity of hearts cultured in the device, hearts cultured statically in dishes, and freshly explanted hearts. After one week of culture, hearts in the device experienced significantly less morphological degradation compared to hearts cultured in dishes. Hearts cultured in devices for one week also maintained capture rates similar to fresh hearts, unlike hearts cultured in dishes. We then cultured explanted injured hearts in the device and used live imaging techniques to continuously record the myocardial revascularization process over several days, demonstrating how our device is compatible with long-term live imaging and thereby enables unprecedented visual access to the multi-day process of adult zebrafish heart regeneration.

Graphical abstract: Extended culture and imaging of normal and regenerating adult zebrafish hearts in a fluidic device

Supplementary files

Article information

Article type
Paper
Submitted
21 Oct 2019
Accepted
12 Dec 2019
First published
13 Dec 2019

Lab Chip, 2020,20, 274-284

Extended culture and imaging of normal and regenerating adult zebrafish hearts in a fluidic device

J. K. Yip, M. Harrison, J. Villafuerte, G. E. Fernandez, A. P. Petersen, C. Lien and M. L. McCain, Lab Chip, 2020, 20, 274 DOI: 10.1039/C9LC01044K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements