Jump to main content
Jump to site search


The effect of nanoparticle presence on aerosol formation during nanoparticle-enhanced laser ablation inductively coupled plasma mass spectrometry

Author affiliations

Abstract

The changes in aerosol physical properties were studied by applying Nanoparticle-Enhanced Laser Ablation Inductively Coupled Plasma Mass Spectrometry (NE-LA-ICP-MS). This approach was compared to conventional LA-ICP-MS method. Analyte signal enhancement was related to the particle number concentration of aerosol for three sizes of Au nanoparticles (NPs) applied on the metal sample surface in the form of droplets. The dependence of the number of generated particles on the laser fluence in the range from 0.5 to 10 J cm−2 was studied. A different shape of the particle size distribution (PSD) of NE-LA-ICP-MS and LA-ICP-MS aerosol was determined. The aerosol structure was additionally studied on filters using scanning electron microscopy (SEM). Compared to LA-ICP-MS, NE-LA-ICP-MS produced a larger proportion of small particles (<30 nm), and was approaching the ideal monodisperse aerosol that is evaporated in ICP with a high efficiency. The measurements proved that NPs on the sample surface could influence the evaporation, condensation and coagulation processes in aerosol formation as well as the signal of analytes in ICP-MS.

Graphical abstract: The effect of nanoparticle presence on aerosol formation during nanoparticle-enhanced laser ablation inductively coupled plasma mass spectrometry

Back to tab navigation

Article information


Submitted
13 Jul 2020
Accepted
21 Sep 2020
First published
25 Sep 2020

J. Anal. At. Spectrom., 2020, Advance Article
Article type
Paper

The effect of nanoparticle presence on aerosol formation during nanoparticle-enhanced laser ablation inductively coupled plasma mass spectrometry

M. Holá, Z. Salajková, A. Hrdlička, J. Ondráček, K. Novotný, D. Pavliňák, M. Vojtíšek-Lom, L. Čelko, P. Pořízka, V. Kanický, D. Prochazka, J. Novotný and J. Kaiser, J. Anal. At. Spectrom., 2020, Advance Article , DOI: 10.1039/D0JA00324G

Social activity

Search articles by author

Spotlight

Advertisements