Jump to main content
Jump to site search

Issue 9, 2020
Previous Article Next Article

Extreme ultraviolet plasma spectroscopy of a pseudospark XUV source

Author affiliations

Abstract

The development of extreme ultraviolet (XUV) sources for tabletop operation has enabled a range of new applications in nano-structuring and spectroscopy. The quantitative characterization of the XUV emission obtained from a pseudospark hollow cathode lamp (HCL) was carried out with a self-developed flat-field spectrometer for the λ < 25 nm spectral range. The wavelength calibration in XUV spectroscopy is challenging, because of the poor grating resolving power for ultrashort wavelengths, which propagate only in a vacuum. Among three alternative methods, flat-field calibration showed the highest accuracy over a wider range. The plasma parameters were extracted from the calibrated spectra. The electron temperatures of the discharged N2, O2 and Ar gases in the HCL are consistent in the range of 17–22 eV. The intensity of the XUV radiation decreased with the increase of working gas pressure, due to self-absorption. A self-developed one-hole HCL exhibited three orders of magnitude higher electron density (Ne = 1.5 × 1019 cm−3) compared to the state-of-the-art three-hole HCL design (Ne = 1016 cm−3), as confirmed by means of collisional-radiative modelling. These results, along with a comparable spectral fingerprint, suggest more extensive and homogeneous excitation across the entire plasma body in the own design.

Graphical abstract: Extreme ultraviolet plasma spectroscopy of a pseudospark XUV source

Back to tab navigation

Article information


Submitted
06 May 2020
Accepted
16 Jul 2020
First published
05 Aug 2020

J. Anal. At. Spectrom., 2020,35, 2011-2022
Article type
Paper

Extreme ultraviolet plasma spectroscopy of a pseudospark XUV source

D. Qu and D. Bleiner, J. Anal. At. Spectrom., 2020, 35, 2011
DOI: 10.1039/D0JA00215A

Social activity

Search articles by author

Spotlight

Advertisements