Jump to main content
Jump to site search


Energy- and cost-effective non-sterilized fermentation of 2,3-butanediol by an engineered Klebsiella pneumoniae OU7 with anti-microbial contamination system

Abstract

Microbial contamination is a serious challenge that needs to be overcome for the successful biosynthesis of 2,3-butanediol (2,3-BD). However, traditional strategies such as antibiotic administration or sterilization are costly, have high energy demands, and may increase the risk of antibiotic resistance. Here, we intend to develop a robust strategy to achieve non-sterilized fermentation of 2,3-BD. Briefly, the robust strain can metabolize unconventional chemicals as essential growth nutrients, and therefore, outcompete contaminant microbes that cannot use unconventional chemicals. To this end, Klebsiella pneumoniae OU7, a robust strain, was confirmed to rapidly exploit urea and phosphite (unconventional chemicals) as the primary sources of nitrogen (N) and phosphorus (P), and withstand deliberate contamination in the possibly contaminated systems. Secondly, metabolic engineering, pathogenicity elimination and adaptive laboratory evolution were successively performed, endowing the best strain with an excellent fermentation performance for safe 2,3-BD production. Finally, 84.53 g/L of 2,3-BD was synthesized with a productivity of 1.17 g/L/h and a yield of 0.38 g/g under the non-sterilized system. In summary, our technique reduces labor and energy costs and simplifies the fermentation process because sterilization does not need to be performed. Thus, our work will be beneficial for the sustainable synthesis of 2,3-BD.

Back to tab navigation

Supplementary files

Article information


Submitted
07 Sep 2020
Accepted
14 Oct 2020
First published
15 Oct 2020

Green Chem., 2020, Accepted Manuscript
Article type
Paper

Energy- and cost-effective non-sterilized fermentation of 2,3-butanediol by an engineered Klebsiella pneumoniae OU7 with anti-microbial contamination system

Z. Guo, X. Ou, P. Xu, H. Gao, L. Zhang, M. Zong and W. Lou, Green Chem., 2020, Accepted Manuscript , DOI: 10.1039/D0GC03044A

Social activity

Search articles by author

Spotlight

Advertisements