Issue 24, 2020

Fabrication of lignin nanospheres by emulsification in a binary γ-valerolactone/glycerol system and their application as a bifunctional reducer and carrier for Pd nanoparticles with enhanced catalytic activity

Abstract

Lignin nanosizing has received much interest as it offers new potential for value-added applications of the currently under-utilized lignin biopolymers. However, conventional lignin nanosizing technologies often rely on the use of large amounts of toxic organic solvents, and a time-consuming dialysis process that is required to remove the solvents. Herein, we present a novel and effective approach using a binary system consisting of green γ-valerolactone (GVL) and glycerol solvents to prepare lignin nanospheres (LNS) without lignin modification and additional dialysis processes. The rationale of LNS formation lies in the emulsification of uniform lignin-containing GVL droplets in glycerol by a process consisting of (1) heating to 80 °C, and (2) cooling to room temperature. Through this simple process, we obtained very high LNS yield (over 90%), with narrow size distribution (about 275 nm) by using maple kraft lignin as the raw material. This lignin nanosizing approach is universal when applied to different sources/types of lignins. The as-prepared LNS were further applied as a green reducing agent and carrier for the synthesis of Pd nanoparticles (NPs) in a facile in situ reduction process. Pd@LNS exhibited significantly enhanced catalytic capacity in the hydrogen evolution from formic acid and in the reduction of Cr(VI) to Cr(III) compared with bare Pd NPs. The Pd@LNS catalyst demonstrated high recyclability owing to the good chemical stability of LNS and robust loading of Pd NPs on LNS. Consequently, this work offers a green, universal and effective approach for LNS fabrication and presents a promising application of LNS as metal NP carriers for catalysis purposes.

Graphical abstract: Fabrication of lignin nanospheres by emulsification in a binary γ-valerolactone/glycerol system and their application as a bifunctional reducer and carrier for Pd nanoparticles with enhanced catalytic activity

Supplementary files

Article information

Article type
Paper
Submitted
16 Jul 2020
Accepted
24 Oct 2020
First published
26 Oct 2020

Green Chem., 2020,22, 8594-8603

Fabrication of lignin nanospheres by emulsification in a binary γ-valerolactone/glycerol system and their application as a bifunctional reducer and carrier for Pd nanoparticles with enhanced catalytic activity

G. Wang, T. Pang, S. Chen, W. Sui, C. Si and Y. Ni, Green Chem., 2020, 22, 8594 DOI: 10.1039/D0GC02424D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements