Jump to main content
Jump to site search


A unique pathway to platform chemicals: aldaric acids as stable intermediates for the synthesis of furandicarboxylic acid esters

Author affiliations

Abstract

2,5-Furandicarboxylic acid (FDCA) has received attention as an emerging bio-based building block with many applications, especially in renewable polyesters. The common route to FDCA uses the unstable 5-hydroxymethylfurfural (HMF) as an intermediate. Here, we present an alternative route to FDCA and its esters using C6 aldaric acids as stable intermediates. Aldaric acids, or sugar diacids, can be obtained by the oxidation of C6 sugars or uronic acids from pectin. Subsequent dehydration of aldaric acids by solid acid catalysts in butanol produces furancarboxylates. Using silica-supported acid catalysts, over 90% yields of furancarboxylates were achieved with the selectivity to FDCA and its esters reaching 80%.

Graphical abstract: A unique pathway to platform chemicals: aldaric acids as stable intermediates for the synthesis of furandicarboxylic acid esters

Back to tab navigation

Supplementary files

Article information


Submitted
06 Jul 2020
Accepted
21 Aug 2020
First published
24 Aug 2020

This article is Open Access

Green Chem., 2020, Advance Article
Article type
Paper

A unique pathway to platform chemicals: aldaric acids as stable intermediates for the synthesis of furandicarboxylic acid esters

N. van Strien, S. Rautiainen, M. Asikainen, D. A. Thomas, J. Linnekoski, K. Niemelä and A. Harlin, Green Chem., 2020, Advance Article , DOI: 10.1039/D0GC02293D

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements