Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.

Highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability


The supported Pt catalysts have been extensively investigated for CO2 hydrogenation with methane and CO as the principal products. In this work, the Pt/In2O3 catalyst prepared with decomposition precipitation were tested for CO2 hydrogenation to methanol. The Pt/In2O3 catalyst exhibited a highly improved activity towards CO2 hydrogenation, with methanol selectivity of ca. 100% at the temperatures below 225 °C, 74% at 275 °C and 54% at 300 °C, respectively, compared to the pure In2O3 catalyst. This represents the highest methanol selectivity reported on Pt catalysts for CO2 hydrogenation. The stability of the Pt/In2O3 catalyst at the elevated temperatures has also been enhanced from that of the pure In2O3 catalyst, indicated by the fact that the methanol formation rate only decreases to 95% of the initial rate after 5 hrs on the reaction stream and remains largely constant afterward. In contrast, the pure In2O3 catalyst loses 20% of the initial methanol formation rate after 9 hrs on stream. Characterization of the catalysts confirms that the Pt nanoparticles are well dispersed on In2O3 with a particle size below 3 nm. The strong metal-support interaction (SMSI) between Pt and In2O3 improves the stability of the catalyst and prevents the over-reduction of In2O3. The synergy between the supported Pt nanoparticles and In2O3 balances the hydrogen activation and the density of the surface oxygen vacancies in In2O3, resulting in the high activity for CO2 hydrogenation and the enhanced stability of the Pt/In2O3 catalyst.

Back to tab navigation

Supplementary files

Article information

09 May 2020
26 Jun 2020
First published
26 Jun 2020

Green Chem., 2020, Accepted Manuscript
Article type

Highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability

K. Sun, N. Rui, Z. Zhang, Z. Sun, Q. Ge and C. Liu, Green Chem., 2020, Accepted Manuscript , DOI: 10.1039/D0GC01597K

Social activity

Search articles by author