Issue 14, 2020

Immobilized piperazine on the surface of graphene oxide as a heterogeneous bifunctional acid–base catalyst for the multicomponent synthesis of 2-amino-3-cyano-4H-chromenes

Abstract

Immobilized piperazine on the surface of graphene oxide (piperazine-GO) is synthesized and characterized by different methods such as FT-IR, solid-state 29Si{1H} and 13C{1H} CP/MAS NMR, elemental analysis, TGA, TEM, FE-SEM, XPS, and TPD. Subsequently, it is used as a heterogeneous bifunctional acid–base catalyst for the efficient multicomponent reaction of malononitrile, different active compounds containing enolizable C–H bonds and various aryl/alkyl aldehydes in aqueous ethanol. A wide variety of 2-amino-3-cyano-4H-chromenes are synthesized in the presence of this heterogeneous catalyst in good to high yields and with short reaction times. The catalyst is easily separated and reused for at least six times without significant loss of activity. The acidic nature of GO improves the catalytic activity of the supported piperazine and also provides heterogeneity to the catalyst. Use of aqueous ethanol as a green solvent, high turnover numbers (TON), facile catalyst recovery and reuse, simple work-up and generality of the method make this protocol an environmentally benign procedure for the synthesis of the title heterocycles.

Graphical abstract: Immobilized piperazine on the surface of graphene oxide as a heterogeneous bifunctional acid–base catalyst for the multicomponent synthesis of 2-amino-3-cyano-4H-chromenes

Supplementary files

Article information

Article type
Paper
Submitted
10 Apr 2020
Accepted
22 Jun 2020
First published
22 Jun 2020

Green Chem., 2020,22, 4604-4616

Immobilized piperazine on the surface of graphene oxide as a heterogeneous bifunctional acid–base catalyst for the multicomponent synthesis of 2-amino-3-cyano-4H-chromenes

A. Khazaee, R. Jahanshahi, S. Sobhani, J. Skibsted and J. M. Sansano, Green Chem., 2020, 22, 4604 DOI: 10.1039/D0GC01274B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements