Jump to main content
Jump to site search

Issue 13, 2020
Previous Article Next Article

A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts

Author affiliations

Abstract

Promotion with small amounts of different elements is an efficient strategy for the enhancement of the performance of many heterogeneous catalysts. Supported cobalt catalysts exhibit significant activity in the synthesis of primary amines via alcohol amination with ammonia, which is an economically efficient and environmentally friendly process. Insufficient selectivity to primary amines, low activity and fast cobalt catalyst deactivation remain serious issues restricting the application of alcohol amination in the industry. In this work, we have discovered the multifaceted role of the bismuth promoter, which is highly mobile under reaction conditions, in 1-octanol amination over supported cobalt catalysts. First, the overall reaction rate was enhanced more than twice on promotion with bismuth. Second, the selectivity to primary amines increased 6 times in the presence of Bi at high alcohol conversion. Finally, the bismuth promotion resulted in extremely high stability of the cobalt catalyst. Characterization by XRD, temperature programmed reduction, STEM, CO chemisorption, BET, TGA and FTIR has showed that the enhancement of the catalytic performance on promotion with bismuth is due to better cobalt reducibility, easy removal of strongly adsorbed intermediates and products by the mobile promoter and suppression of amine coupling reactions resulting in secondary and tertiary amines.

Graphical abstract: A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts

Back to tab navigation

Supplementary files

Article information


Submitted
16 Mar 2020
Accepted
26 May 2020
First published
26 May 2020

Green Chem., 2020,22, 4270-4278
Article type
Paper

A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts

F. Niu, M. Bahri, O. Ersen, Z. Yan, B. T. Kusema, A. Y. Khodakov and V. V. Ordomsky, Green Chem., 2020, 22, 4270
DOI: 10.1039/D0GC00937G

Social activity

Search articles by author

Spotlight

Advertisements