Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.


Issue 10, 2020
Previous Article Next Article

Highly efficient oxidation of alcohols to carboxylic acids using a polyoxometalate-supported chromium(iii) catalyst and CO2

Author affiliations

Abstract

Direct catalytic oxidation of alcohols to carboxylic acids is very attractive, but economical catalysis systems have not yet been well established. Here, we show that a pure inorganic ligand-supported chromium compound, (NH4)3[CrMo6O18(OH)6] (simplified as CrMo6), could be used to effectively promote this type of reaction in the presence of CO2. In almost all cases, oxidation of various alcohols (aromatic and aliphatic) could be achieved under mild conditions, and the corresponding carboxylic acids can be achieved in high yield. The chromium catalyst 1 can be reused several times with little loss of activity. Mechanism study and control reactions demonstrate that the acidification proceeds via the key oxidative immediate of aldehydes.

Graphical abstract: Highly efficient oxidation of alcohols to carboxylic acids using a polyoxometalate-supported chromium(iii) catalyst and CO2

Back to tab navigation

Supplementary files

Article information


Submitted
31 Jan 2020
Accepted
14 Apr 2020
First published
15 Apr 2020

Green Chem., 2020,22, 3150-3154
Article type
Paper

Highly efficient oxidation of alcohols to carboxylic acids using a polyoxometalate-supported chromium(III) catalyst and CO2

Y. Wang, Z. Wu, H. Yu, S. Han and Y. Wei, Green Chem., 2020, 22, 3150
DOI: 10.1039/D0GC00388C

Social activity

Search articles by author

Spotlight

Advertisements