Issue 9, 2020

Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties

Abstract

The encapsulation of food/dietary supplements into electrospun cyclodextrin (CD) inclusion complex nanofibers paves the way for developing novel carrying and delivery substances along with orally fast-dissolving properties. In this study, CD inclusion complex nanofibers of Vitamin-A acetate were fabricated from polymer-free aqueous systems by using the electrospinning technique. The hydroxypropylated (HP) CD derivatives of HPβCD and HPγCD were used for both encapsulation of Vitamin-A acetate and the electrospinning of free-standing nanofibrous webs. The ultimate Vitamin-A acetate/CD nanofibrous webs (NWs) were obtained with a loading capacity of 5% (w/w). The amorphous distribution of Vitamin-A acetate in the nanofibrous webs by inclusion complexation and the unique properties of nanofibers (e.g. high surface area and porosity) ensured the fast disintegration and fast dissolution/release of Vitamin-A acetate/CD-NW in a saliva simulation and aqueous medium. The enhanced solubility of Vitamin-A acetate in the case of Vitamin-A acetate/CD-NW also ensured an improved antioxidant property for the Vitamin-A acetate compound. Moreover, Vitamin-A acetate thermally degraded at higher temperature in Vitamin-A acetate/CD-NWs, suggesting the enhanced thermal stability of this active compound. Here, HPβCD formed inclusion complexes in a more favorable way when compared to HPγCD. Therefore, there were some uncomplexed Vitamin-A acetate crystals detected in Vitamin-A acetate/HPγCD-NW, while Vitamin-A acetate molecules loaded in Vitamin-A acetate/HPβCD-NW were completely in complexed and amorphous states. Depending on this, better solubilizing effect, higher release amount and enhanced antioxidant properties have been provided for the Vitamin-A acetate compound in the case of Vitamin-A acetate/HPβCD-NW.

Graphical abstract: Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties

Supplementary files

Article information

Article type
Paper
Submitted
07 Jul 2020
Accepted
19 Aug 2020
First published
19 Aug 2020

Food Funct., 2020,11, 7626-7637

Author version available

Design of polymer-free Vitamin-A acetate/cyclodextrin nanofibrous webs: antioxidant and fast-dissolving properties

A. Celebioglu and T. Uyar, Food Funct., 2020, 11, 7626 DOI: 10.1039/D0FO01776K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements