Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Encapsulation of emulsions by a novel delivery system of fluid core–hard shell biopolymer particles to retard lipid oxidation

Author affiliations

Abstract

Colloidal delivery systems could be designed to retard lipid oxidation in foods, thereby extending their shelf-lives and improving their nutritional quality. In this study, a class of novel fluid core–hard shell biopolymer particles with lipid droplets being encapsulated in the biopolymer has been designed and fabricated to increase their lipid oxidative stability. This was achieved by injecting a mixture of Tween 80-coated lipid droplets, xanthan gum, and calcium ions into a sodium alginate solution at either pH 3 or 7. The viscosity, hardness, microstructure, physical stability, and chemical stability of the droplet-loaded fluid core–hard shell (FCHS) biopolymer particles were then measured. The results indicated that the FCHS biopolymer particles had thinner, denser, and harder shells at pH 3 than at pH 7. The thickness of the alginate biopolymer particle walls could be modulated by varying the xanthan gum to alginate ratio used during fabrication. The lipid oxidation measurements indicated that the primary (PV) and secondary (TBARS) reaction products decreased by approximately 60% and 75%, respectively, compared to the control after 13 days of storage at pH 3. These results indicate that the encapsulation of lipid droplets within the FCHS biopolymer particles substantially increased their oxidative stability. The biopolymer particles developed in this study may have promising applications in various food, pharmaceutical, and cosmetic products for retarding lipid oxidation.

Graphical abstract: Encapsulation of emulsions by a novel delivery system of fluid core–hard shell biopolymer particles to retard lipid oxidation

Back to tab navigation

Article information


Submitted
19 Mar 2020
Accepted
21 May 2020
First published
02 Jun 2020

Food Funct., 2020, Advance Article
Article type
Paper

Encapsulation of emulsions by a novel delivery system of fluid core–hard shell biopolymer particles to retard lipid oxidation

D. Ma, Q. Huang, Y. Wu, J. Chen, X. Lu, D. J. McClements and Y. Wang, Food Funct., 2020, Advance Article , DOI: 10.1039/D0FO00725K

Social activity

Search articles by author

Spotlight

Advertisements