Jump to main content
Jump to site search


Electrochemical exfoliation of graphite in H2SO4, Li2SO4 and NaClO4 solutions monitored in-situ by Raman microscopy and spectroscopy

Abstract

The electrochemical exfoliation of graphite is one of the cheapest and most tunable industrial techniques to produce graphene nanosheets with tunable degree of oxidation and solubility. Anodic oxidation allows high-yield production of electrochemically exfoliated graphene oxide (EGO) in either acids or salt solutions, with the key role played by ions electrochemically driven in between the graphene sheets. This chemical intercalation is followed by a mesoscale mechanical exfoliation process, which is key for the high yield of the process, but which is still poorly understood. In this work, we use Raman spectroscopy to simultaneously monitor the intercalation and oxidation processes taking place on the surface of highly ordered pyrolytic graphite (HOPG) during electrochemical exfoliation. The mechanism of EGO formation in either acidic (0.5 M H2SO4) or neutral (0.5 M Li2SO4) electrolytes through blistering and cracking steps is discussed and described. This process is compared also to non-destructive intercalation of graphite in an organic electrolyte (1 M NaClO4 in acetonitrile). The results obtained show how high exfoliation yield and low defectivity shall be achieved by the combination of efficient, non-destructive intercalation followed by chemical decomposition of the intercalants and gas production.

Back to tab navigation

Supplementary files

Article information


Submitted
24 Nov 2019
Accepted
06 Jan 2020
First published
06 Jan 2020

This article is Open Access

Faraday Discuss., 2020, Accepted Manuscript
Article type
Paper

Electrochemical exfoliation of graphite in H2SO4, Li2SO4 and NaClO4 solutions monitored in-situ by Raman microscopy and spectroscopy

Z. Xia, V. Bellani, J. Sun and V. Palermo, Faraday Discuss., 2020, Accepted Manuscript , DOI: 10.1039/C9FD00123A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements