Jump to main content
Jump to site search


Dual-emission fluorescent silicon nanoparticle-based nanothermometer for ratiometric detection of intracellular temperature in living cells

Author affiliations

Abstract

In this article, we present a kind of dual-emission fluorescent nanothermometer, which is made of europium (Eu3+)-doped silicon nanoparticles (Eu@SiNPs), allowing the detection of intracellular temperature in living cells with high accuracy. In particular, the presented SiNP-based thermometer features dual-emission fluorescence (blue (455 nm) and red (620 nm) emission), negligible toxicity (cell viability of treated cells remains above 90% during 24 h of treatment) and robust photostability in living cells (i.e., preserving >90% of fluorescence intensity after 45 min of continuous UV irradiation). More significantly, the fluorescence intensity of the Eu@SiNPs exhibits a linear ratiometric temperature response in a broad range from 25 to 70 °C. Taking advantage of these attractive merits, the Eu@SiNP-based nanothermometer is able to accurately (∼4.5% change per °C) determine dynamic changes in intracellular temperature in a quantitative and long-term (i.e., 30 min) manner.

Graphical abstract: Dual-emission fluorescent silicon nanoparticle-based nanothermometer for ratiometric detection of intracellular temperature in living cells

Back to tab navigation

Supplementary files

Article information


Submitted
20 Sep 2019
Accepted
24 Oct 2019
First published
25 Oct 2019

Faraday Discuss., 2020, Advance Article
Article type
Paper

Dual-emission fluorescent silicon nanoparticle-based nanothermometer for ratiometric detection of intracellular temperature in living cells

J. Wang, A. Jiang, J. Wang, B. Song and Y. He, Faraday Discuss., 2020, Advance Article , DOI: 10.1039/C9FD00088G

Social activity

Search articles by author

Spotlight

Advertisements