Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices

Author affiliations

Abstract

The ozonation of 90 chemically diverse organic micropollutants (OMPs) including four classes of illicit drugs and their metabolites was studied in pure buffered water, tap water and wastewater effluent at three specific ozone doses and three pH levels. The second order rate constants for the reaction of 40 OMPs with ozone were known and span across 8 orders of magnitude, from below 1 M−1 s−1 to above 107 M−1 s−1. 47 of the tested OMPs were removed to at least 90% at the highest specific ozone dose of 0.3 mM O3 per mM C at pH 7. However, most illicit drugs, including cocainics, amphetamines and ecstasy-group compounds, were ozone-resistant due to their lack of ozone-reactive functional groups. Exceptions included some opioids and the cocaine biomarker anhydroecgonine methylester which contain olefinic bonds and/or activated benzene rings. Different removal trends at different pH for OMPs were due to the combined effect of target compound speciation and ozone stability, leading to elimination of less than 70% for all OMPs at pH 11. In both tap water and wastewater effluent scavenging by matrix components led to lower ozone exposure compared to pure buffered water and consequently lower removal of OMPs. This multi-compound ozonation study utilised liquid chromatography-mass spectrometry to provide a large dataset on the removal of environmentally relevant OMPs, including those of interest for drinking water regulations. Besides including pharmaceutically active compounds that have not been studied with ozone before (e.g. gliclazide, anhydroecgonine methylester, quetiapine, 6-monoacetylmorphine), this study simultaneously shows ozonation data for a wide range of illicit drugs.

Graphical abstract: Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices

Back to tab navigation

Supplementary files

Article information


Submitted
21 Mar 2020
Accepted
28 Apr 2020
First published
29 Apr 2020

This article is Open Access

Environ. Sci.: Water Res. Technol., 2020, Advance Article
Article type
Paper

Simultaneous ozonation of 90 organic micropollutants including illicit drugs and their metabolites in different water matrices

G. A. Zoumpouli, F. Siqueira Souza, B. Petrie, L. A. Féris, B. Kasprzyk-Hordern and J. Wenk, Environ. Sci.: Water Res. Technol., 2020, Advance Article , DOI: 10.1039/D0EW00260G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements