Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2020

Organic structure and solid characteristics determine reactivity of phenolic compounds with synthetic and reclaimed manganese oxides

Author affiliations

Abstract

Manganese (Mn) oxides have been proposed for in situ treatment of organic (e.g., phenolic) contaminants, although little is known about the reactivity of reclaimed solids that might be used as alternatives to synthetic oxides. In this study, we investigate the impacts of phenol substituents and manganese oxide properties (e.g., surface area, iron substitution) on the kinetics and mechanism of this reaction. Reclaimed solids from acid mine drainage and drinking water treatment systems contain Mn(IV) and are capable of oxidizing phenolic contaminants, although their reactivity is 1–3 orders of magnitude slower than that of synthetic δ-MnO2. Both electron transfer-limited and sorption-limited mechanisms occur in 29 phenols reacted with the three manganese oxide materials. This finding contrasts with the common assumption that the first one-electron transfer from the phenol to the manganese oxide is rate-limiting. The occurrence of both mechanisms has implications for the rates and products of phenol oxidation. Interestingly, the mechanism for a given phenol changes between solids. We attribute this observed mechanism shift primarily to phenolic substituent effects, with influences from the pHpzc, surface area, and iron substitution of the manganese oxide materials. In addition, we investigate the predictive utility of quantitative structure–activity relationships, as these models have not been tested using complex reactants and non-synthetic manganese oxides. In-depth analysis and external validation measures indicate these common QSAR models are ineffective at predicting the behavior of complex contaminants or reactions with non-synthetic manganese oxides, and therefore have limited application for predicting contaminant oxidation by manganese oxides in environmental and engineered systems.

Graphical abstract: Organic structure and solid characteristics determine reactivity of phenolic compounds with synthetic and reclaimed manganese oxides

Supplementary files

Article information


Submitted
26 Sep 2019
Accepted
12 Dec 2019
First published
12 Dec 2019

Environ. Sci.: Water Res. Technol., 2020,6, 540-553
Article type
Paper
Author version available

Organic structure and solid characteristics determine reactivity of phenolic compounds with synthetic and reclaimed manganese oxides

E. L. Trainer, M. Ginder-Vogel and C. K. Remucal, Environ. Sci.: Water Res. Technol., 2020, 6, 540 DOI: 10.1039/C9EW00859D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements