Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance work on Wednesday 21st October 2020 from 07:00 AM to 07:00 PM (BST).

During this time our website performance may be temporarily affected. We apologise for any inconvenience this might cause and thank you for your patience.



Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations

Author affiliations

Abstract

Nanotechnology can potentially revolutionize the agricultural industry by offering nano-formulations of pesticides, the so-called nano-pesticides, which can e.g. increase the efficacy and stability of the active ingredients of pesticides. However, it is unknown how a nano-formulation may modulate the interaction between the active ingredient and non-target soil (micro)organisms. Here, we show that long-term exposure to a high dosage of atrazine (ATZ) containing nano-pesticides (NPATZs), where ATZ is encapsulated in a biodegradable polymeric shell, significantly decreases the metabolic capacity of rhizosphere bacterial communities and alters their community structure and composition compared to rhizosphere bacterial communities exposed to the same amount of conventionally applied ATZ. In the rhizosphere, the NPATZs and ATZ were found to be initially degraded by Mycobacterium and Pseudomonas bacteria. As the exposure time increased, more bacterial consortia became involved in NPATZ degradation than in ATZ degradation, especially in metabolizing N-isopropylammelide to carboxybiuret catalyzed by the genes atzC and atzD. Our findings provide important insights into the time-resolved interactions between rhizosphere bacterial communities and nano-pesticides.

Graphical abstract: Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations

Back to tab navigation

Supplementary files

Article information


Submitted
18 Jun 2020
Accepted
07 Sep 2020
First published
08 Sep 2020

Environ. Sci.: Nano, 2020, Advance Article
Article type
Paper

Interaction between a nano-formulation of atrazine and rhizosphere bacterial communities: atrazine degradation and bacterial community alterations

Y. Zhai, F. Abdolahpur Monikh, J. Wu, R. Grillo, D. Arenas-Lago, G. K. Darbha, M. G. Vijver and W. J. G. M. Peijnenburg, Environ. Sci.: Nano, 2020, Advance Article , DOI: 10.1039/D0EN00638F

Social activity

Search articles by author

Spotlight

Advertisements