Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Nano-sized iron oxides supported on polyester textile to remove fluoroquinolones in hospital wastewater

Author affiliations

Abstract

In this study, we examined the removal kinetics of two fluoroquinolones (FQs), flumequine (FLU) and ciprofloxacin (CIP), in synthetic wastewater (SWW) and real hospital wastewater (RHW) using FeOx thin films, peroxymonosulfate (PMS) and visible light. Nano-sized iron oxides (FeOx) supported on polyester textile (PES) were synthesized by a novel high-power impulse magnetron sputtering (HiPIMS) method. The O2/Ar ratio is an important factor to tune Fe oxidation, which controls the composition of the thin film and thus the capability of the resulting FeOx for PMS activation. Based on scavenging experiments, sulfate radicals were shown to be predominantly involved in the heterogeneous oxidation reaction. Competitive effects with reactive species could explain the lower degradation rate constants in mixtures relative to those in single systems. In contrast to chlorides, organic matter, sulfates and phosphates commonly found in RHW dramatically decreased the removal performance of both target compounds, FLU and CIP. However, increasing the PMS concentration to 3 mM improved considerably the degradation and mineralization, even in real wastewater. The good stability and reusability of the FeOx/PES material have been confirmed in hospital wastewater over five successive oxidation cycles.

Graphical abstract: Nano-sized iron oxides supported on polyester textile to remove fluoroquinolones in hospital wastewater

Back to tab navigation

Supplementary files

Article information


Submitted
10 Mar 2020
Accepted
11 Jun 2020
First published
11 Jun 2020

Environ. Sci.: Nano, 2020, Advance Article
Article type
Paper

Nano-sized iron oxides supported on polyester textile to remove fluoroquinolones in hospital wastewater

G. N. Coulibaly, S. Rtimi, A. A. Assadi and K. Hanna, Environ. Sci.: Nano, 2020, Advance Article , DOI: 10.1039/D0EN00261E

Social activity

Search articles by author

Spotlight

Advertisements