Issue 6, 2020

Nanoparticulate zero valent iron interaction with dissolved organic matter impacts iron transformation and organic carbon stability

Abstract

Although there is an increasing use of nanoparticulate zero-valent iron (nZVI) in the remediation of contaminated soil and water environments, there is still little understanding of the mechanisms of interaction between nZVI and dissolved organic matter (DOM), including the resulting effects on the fate and functions of both nZVI and DOM. Using a manifold analytical design, the adsorption of DOM (humic acid and fulvic acid) by nZVI (two kinds of naked nZVIs of different sizes and one kind of carboxymethyl cellulose (CMC)-coated nZVI) was investigated. In addition, the effects of this sorption on DOM chemical stability and on nZVI transformation were systematically investigated. The CMC coating on nZVI limited the adsorption of DOM. DOM fractions of moderate and high molecular weights (MW, >3 kDa) had a relatively high affinity to bare nZVI surfaces, whereas the low MW fractions such as quinone-like and protein-like fluorophores preferentially remained in the aqueous phase. Interaction with DOM accelerated the oxidation of the core Fe0 of nZVI due to the strong iron chelating action of aqueous DOM and potential electron transfer mediating action of the limitedly adsorbed quinone-like DOM fractions. Compared with pristine DOM, the DOM fraction with nZVI was much more stable, while the residual DOM fraction in the aqueous phase after the nZVI adsorption had lower photochemical/chemical stability as indicated by the greater reduction capability, mineralization percentage, and photodegradation percentage. These findings increase our understanding of the effects of nZVI interaction with DOM and have implications on the carbon cycle and on the large scale use of nZVI.

Graphical abstract: Nanoparticulate zero valent iron interaction with dissolved organic matter impacts iron transformation and organic carbon stability

Supplementary files

Article information

Article type
Paper
Submitted
23 Feb 2020
Accepted
28 Apr 2020
First published
28 Apr 2020

Environ. Sci.: Nano, 2020,7, 1818-1830

Nanoparticulate zero valent iron interaction with dissolved organic matter impacts iron transformation and organic carbon stability

Y. Wang, K. Yang and D. Lin, Environ. Sci.: Nano, 2020, 7, 1818 DOI: 10.1039/D0EN00197J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements