Jump to main content
Jump to site search
Access to RSC content Close the message box

Continue to access RSC content when you are not at your institution. Follow our step-by-step guide.



Nanoparticle affinity for natural soils: a functional assay for determining particle attachment efficiency in complex systems

Author affiliations

Abstract

Few standardized methods and reference systems have been established for evaluating the behavior of engineered nanomaterials in complex media like natural soils. In this study, a working method for a functional assay to determine the affinity of nanoparticles (NPs) for soil surfaces by batch test is provided along with a case study demonstrating the utility of the method using a proposed reference soil (LUFA 2.2) and gold nanoparticles (AuNPs) with four different surface treatments (citrate [Cit], gum arabic [GA], polyvinylpyrrolidone [PVP], and branched polyethylenimine [bPEI]). Particle attachment efficiencies (α) of AuNPs with LUFA 2.2 soil spanned four orders of magnitude, with αbPEI-Au > αPVP-Au > αCit-AuαGA-Au, suggesting that GA-Au will be significantly more mobile in this soil than the other AuNPs. These results run counter to a widely held assumption that acquired macromolecular coatings in natural systems will likely mask engineered coatings and dictate NP mobility. Moreover, the trend in attachment efficiency could not be predicted based on differences in intrinsic or extrinsic NP properties alone, which supports the need for development and validation of well-controlled functional assays performed in complex media.

Graphical abstract: Nanoparticle affinity for natural soils: a functional assay for determining particle attachment efficiency in complex systems

Back to tab navigation

Supplementary files

Article information


Submitted
06 Jan 2020
Accepted
11 May 2020
First published
13 May 2020

Environ. Sci.: Nano, 2020, Advance Article
Article type
Paper

Nanoparticle affinity for natural soils: a functional assay for determining particle attachment efficiency in complex systems

A. A. Turner, N. M. K. Rogers, N. K. Geitner and M. R. Wiesner, Environ. Sci.: Nano, 2020, Advance Article , DOI: 10.1039/D0EN00019A

Social activity

Search articles by author

Spotlight

Advertisements