Jump to main content
Jump to site search


A direct Z-scheme ZnS/Co9S8 heterojunction-based photoelectrochemical sensor for the highly sensitive and selective detection of chlorpyrifos

Author affiliations

Abstract

The detection of chlorpyrifos is of great importance due to its massive usage and serious toxic effects on human health and the ecosystem. Although fruitful achievements have been made in the photoelectrochemical (PEC) sensing of chlorpyrifos, the construction of a label-free PEC interface with high sensitivity and selectivity still faces serious challenges. In this work, we design a direct Z-scheme ZnS/Co9S8 heterojunction with hollow cubic structures, and the PEC sensor based on such materials achieves the highly sensitive and selective detection of chlorpyrifos through the inhibition to the photoresponse of ZnS/Co9S8 by chlorpyrifos. For sensitivity, the hollow cubic structures of the heterojunction increase the light absorption, and the formation of a direct Z-scheme of the photocatalysts greatly improves the spatial separation of photogenerated charge carriers, thus achieving better PEC activity and higher photocurrent response of the heterojunction than those of individual materials. It shows a wide linear range from 0.05 ppb to 40 ppb with a detection limit as low as 0.0166 ppb (defined as S/N = 3). In particular, the specific interaction between ZnS/Co9S8 and N and S atoms of chlorpyrifos creates the high selectivity for chlorpyrifos. In addition, the PEC sensor is still stable after storage for two weeks.

Graphical abstract: A direct Z-scheme ZnS/Co9S8 heterojunction-based photoelectrochemical sensor for the highly sensitive and selective detection of chlorpyrifos

Back to tab navigation

Supplementary files

Article information


Submitted
05 Nov 2019
Accepted
16 Jan 2020
First published
16 Jan 2020

Environ. Sci.: Nano, 2020, Advance Article
Article type
Paper

A direct Z-scheme ZnS/Co9S8 heterojunction-based photoelectrochemical sensor for the highly sensitive and selective detection of chlorpyrifos

S. Chen, X. Xiao, P. Li, Y. Li, M. Yang, Z. Guo and X. Huang, Environ. Sci.: Nano, 2020, Advance Article , DOI: 10.1039/C9EN01265F

Social activity

Search articles by author

Spotlight

Advertisements